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THE SERIES OF POLYNOMIALS IN THE PROBLEM -- 
OF R-IREE BODIES 

@ p l l e t e n '  In- ta  Teoreticheskoy Astronomii 
Tom 9 ,  No. (107), pp.234-256, 
U.S.S.R., 1963. 

by V. A. Brwnberg 

The series of polynomials i n  the problem of three bodies converging f o r  
any r ea l  moment of t i m e  a re  investigated by numerical methods. 
coeft-icients , which transform the  Taylor series with some f i n i t e  convergence 
circle i n  a series of polynomials converging f o r  any point within the  Mittag- 
k f f l e r  r ec t i l i nea r  s t a r  of generative function a re  given i n  Section 1. 

f o r  the e l l i p t i c  three-body problem. 

The convergence 

Such power-polynomial series by mean anomaly a re  constructed i n  Section 2 

For the sake of comparison, the Sundman s e r i e s ,  re la ted  t o  the same prob- 
lem, are  analyzed in  Section 3. 

Finally,  the series of power-polynomials by the var iable  regularizing the 
double co l l i s ions  is dea l t  with i n  Secti-on 4 .  

k 

* * 

INTRODUCTION. 

The methods discussed i n  the  present work are mainly half  a century old, 
and possibly more. 
s i b l e  i n  our time, allows a d i f fe ren t  approach t o  these methods, and i n  numerous 
cases a s ign i f icant  broadening of the  area of t h e i r  application. 

However, the u t i l i z a t i o n  of f a s t  computers, only made pos- 

Assume t h a t  f (o)  is a certain ana ly t ica l  function, loca l ly  given by the  
Taylor series 

f(w) = a. + alw + a2w2 +. . . , 
converging i n  a ce r t a in  circle with center  a t  coordinate or ig in .  
the most general theory on analyt ic  continuation, brought fo r th  by Li t tag-Leff ler  
i n  1898 1 1 2 ,  131, f(w) may be represented i n  any region,,-fnternal r e l a t ive  t o  the 
r e c t i l i n e a r  s t a r  of t ha t  function, by uniformly converging series of polynomials 

According t o  



whose coefficients linearly degenerate through the coefficients of series (1). 
In other words, there exists for any point w inside the Mittag-Leffler recti- 
linear star a sequence of polynomials fn(w) 
f (w) , where 

(XI = 1, 2 ,  . . .) , converging to 
(2) f,, (w) = cy. ,  - l-Cy)U,o'+ . . . -1- C ~ ~ ~ l u l n , , O ~ ~ l *  

The convergence factors ~ ( ~ 1  are not dependent upon the form of function 
f(w) and they are in their turn the coefficients of polynomials k 

( 3 )  g,,(4 =-c1")-1- C ( I I ) U ) + .  . . * -t-Ctnn (*lJw'nrl , 

uniformly converging to the value of the i u n c t i o ~ ~  

(4) 1 g ((1)) = -i-L-,,; , 

provided only w does not assume real values from 1 to m. Volterra [ 3 0 ]  called 
at once attention to the significance of Mittag-1,eCfler theorem for the problem 
of dynamics, noting that if the coordinates 01' the considered dynamic system 
are analytical functions of time or 01 a cer-tail1 equivalent variable in the 
region encompassing the entire real axis, they may be expanded in series of 
polynomials converging for any real value of tliat variable. 

The more rapid the convergence o i  polyrioinials' (3) sequence to function g (  w),  
the faster, generally speaking, the convergelice of polynomials (2) to function 
f(w). Indeed, it follows from the Cauchy integral 

where x is any point of function's l ( ( 1 ) )  rcit i 1 illear. star, arid I' I S  the closed 
curve 5f length L, located within the s;tai, surrounding the point x and such 
that any ray, emanating from the origin, intersects this curve at one arid only 
point. When w describes the curve r , x /u  describes the path not having ariy 
common point with the part of the real axis f'ioiii 1 to 00. This is why there is 
for any E > 0 N = N ( E )  such that Cor II > N the absolute value of the differ- 
ence standing in the integrand (5) , wi ! ! ! L  i t .  I leiice precisely follows 

Picard 1181 and Painleve [16] pointed i n  1899 to the close link between the 
expansion of analytical functions in series of polynomials and the integration of 
differential equations by the Cauchy-Lipschitz method. In this method, expounded 
in detail by Picard [ZO] , for example, the following sequence of functions xy'n)  
is constructed I 

I 
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which converges uniformly t o  the solution xi(.) of the system of d i f f e ren t i a l  
equations (as n -+ a) 

with i n i t i a l  conditions x ,  (O)=x(p). 1 f the right-hand par t s  of these equations 
do not c lear ly  depend on w and are polynomials from variables X i ,  
Lipschitz method does not provide the poss ib i l i ty  of determining these regions.* 
But i f ,  i n  par t icu lar ,  it i s  known from e i the r  additional considerations tha t  
functions x (w)  are  bounded i n  absolute value from above over the en t i r e  r ea l  
axis  , the ser ies  of  polynomials constructed for  them by the Cauchy-Lipschitz 
method converge fo r  any r ea l  value of  w. 

the Cauchy- 

Sundman [ 2 7 ]  demonstrated i n  1912 tha t  if i n  the three-body problem the 
vector of areas is  not zero, the rectangular coordinates of the bodies, the velo- 
c i t y  components and the time are  analytical  functions i n  an i n f i n i t e  band of 
width 2 Q  and symmetrical re la t ive t o  the real axis of the complex plane of the 
variable w, regularizing the double c o l l  is ions. 
c2re's mapping of the indicated band 011 ii c i r c l e  of unitary radius of the plane 

Further Sundman applied the Poin- 

and obtained the representation of  the geiieml solution of the three-body problem 
in  the form of power se r i e s  by 6 ,  converging for any 18 I < 1, and by the same 
token, a lso f o r  any real  moment of time t .  It W ~ S  c lea r ,  however, t ha t  s e r i e s  of 
such a type are  of l i t t l e  val idi ty  fo r  the c l a r i f i ca t ion  of the e n t i r e  pa t te rn  of 
motion i n  the problems of dynamics. 13ut i t  remained unknown, whether o r  not they 
could be u t i l i zed  f o r  the numerical solution of the three-body problem. 
Belorizky [4]  gave a negative respons? t o  this question. He revealed on the 
example of p a r t i a l  Lagrange solutions or the three-body problem an extremely slow 
convergence of Sundman se r i e s  ( in  the cases considered by him it is necessary t o  
take from 108'10" t o  108'10' terms of se r ies  to  obtaiq one correct  sign over less 
than one s ix th  of the convolution). In 1953-1955 Vernic [28,  291 undertook the 
attempt t o  revise the Belorizky resu l t s  a i d  prac t ica l ly  u t i l i z e  the general solu- 
t ion  of the three-body problem. 
sions and, i n  pa r t i cu la r ,  erroneouslyassertedthat the se r i e s  by powers w converge 
on the en t i r e  plane w. [2] ,  de- 
preciated nearly en t i r e ly  the Vernit works. 

In  1933 

However, ?:e admitted a whole se r i e s  of impreci- 

These errors, discovered by G .  A. Merman i n  1956 

In h i s  work Sundman himself did not mention the poss ib i l i t y  of representing 
the general solut ion of the three-body problem i n  the form of polynomial s e r i e s .  
To tha t  poss ib i l i t y ,  stemming d i rec t ly  from h i s  fundamental theorem, pointed d i -  
r ec t ly  Sundman's contemporaries, and f i r s t  of a l l  Picard [19]. In l a t e r  l i t e r a -  
tu re  only separate reminders a re  encounteced (for  example, Happel, 1941, [ 8 ] ) .  In  
our times t h i s  question was again raised in  the Merman 1958 work [3] , where the 
equations €or the three-body problem are  reduced t o  the polynomial form and f o r  
the case cf divi.sion 
an estimate of e r ro r ,  resul t ing from the subs t i tu t ion  of the exact solut ion by 
Cauchy-Lipschitz polynomials, is  constructed. 

of three-body motion i n  two nearly Keplerian motions 

* fo r  it leads d i r ec t ly  t o  the expansion of functions xi(") i n  s e r i e s  of 
plynomials converging i n  respective r ec t i l i nea r  Mittag-Leffler s t a r s .  
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These investigations served as stimulus to conducting the present work. 
Its object is the effective construction of series of polynomials in the three- 
body problem aid the study of the possibilities of their utilization for the 
numerical solution. Preliminary analysis has shown that the algorithm of poly- 
nomial sequence construction by the Cauchy-Lipschitz method is considerably 
more complex than that for type- (2) polyiioiiiials . Moreover, the farmer converge 
very slowly. It is true, however, that the improvement of convergence may be at- 
tained by the applicarion of the Cauchy-Lipschitz method's variant proposed by 
Picone in 1932 [21]. 
continuous partial derivatives by their argwiieiits to the (v + 1)-st order inclu- 
sive 

In the assumption that the right-hand parts of Eqs. (8) have 

(V > 1) , Picone applies the Cauchy-I,ipscliitz method to the system 

where 

and constructs the sequence of functioiis xylti) i r l  the €01 lowing form: 

I 

Y r . . . . . . , .  . . . .  . . . . . . . . . . . . 
. . . . . . . . . . e . .  : . . . . e . . . .  

Picone estiiiiates the error stemming from the substitution of the exact solu- 
tion X~(OI) of the function x ' ! "~~) ,  and finds that this error decreases with the rise 
of n as 
decrease is proportional to Vn. However, the Picone variant is practically effect- 
ive only in the case of simple right-hand parts of Eqs.(8), which cannot be said 
of the right-hand parts of the equatioiis u r  motion of the three-body problem, 
reduced to the polynomial form. All these causes compel us torenounce the Cauchy- 
Lipschitz polynomials and turn to type-(2) polynomials, 

those of convergence cp) could be computed only once, 
and then be object of utilization at any time. 

l/nv, while in the standard Cauchy-Lipschitz method, the rate of error 

The coefficients a of 

recorded on a magnetic tape 
the Taylor series are found relatively simply from recurrent relations, whi !f e 

All the computations connected with the present work were made with the aid 
of computer M-20. 
In the first section the convergence factors 
series of polynomials are constructed for  the 
section the Sundman series for the two-body problem are investigated and in the 
fourth the series of polynomials in the three-body problem are computed. 

By its contents the work itself is divided in four sections. 
are found, in the second the 

'two-body problem, in the third 
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The setup of Section 3 is called for by the following circumstance. 
was shown by Belorizky, the exclusively slow convergence of Sundman series is 
explained by two causes. The first of them consists in th character itself ' 
of the Poixicare transformation, setting in correspondence to even small positive 
values of w the values of 0 quite close to the unity. 

cause is the smallness of the number R.* This estimate is valid for any types 01' 
motion in the three-body problem and it is unquestionably strongly underrated. 
In this connection it appeared to be of interest to corroborate the qualitative 
estimates of Belorizky and to construct the Sundman series for the 
problem , where the quantity Q ,  the minimum distance of singular points in the 
plane w from the real axis, is also prccisely known. 
of transition to the regularizing variable drops off, and it is sufficient to 
assume for the value of w ,  for example, the mean anomaly M. 

As 

Note that then the interval 
( 5 1 ,  a) is transferred into the interval( a 0.0656,l) o f the axis e ,  The second 

two-body 

Obviously, the requirement 

Section 1. Cornpiitat ion I-_ of Convergence 
Factors 

Contrary to the coefficients of Taylor series, those of polynomial series 
and their PO e s have an innumerable multiplicity of values. A large quantity 
of various c k f  is known in literature [ fo r  example, Mittag-Leffler, 1900-1920 
[14]  ; Le Roy, 1900 [lo], Lindelof, 1903 [ l l ] ,  Perron, 1922 [ 1 7 ] ,  and their number 
could be increased without difficulty. (n) were computed by us. 

too slowly, and these ck(n) were rejected. 
them up here. Generally, ideal would be S L l C h  values of Ck yny which assure the 
maximinn rapid convergence to runction g ( w )  for the minimum order of polynomials ( 3 )  

Some of these 
flowever, the sequence of polynomials ( 3 ) ,  constructed 3 th their aid, converges 

There is hard1 y sense in bringing 

One of the most practical expansions of function g(w), encountered in 1itei.d 
ture, is the Goursat expansion (see Goursat, l903 [ 7 1 ) ,  constituting the result of 
application of the Cauchy-Lipschitz niethod to the differential equation 

= g2, 
dw (13) 

which determined function (4) at the initial condition 
to attempt to generalize the Goursat method a i d  to apply to Eq.(13) the Cauchy- 
Lipschitz method with the Picon variant (modification). 

The system 

g(0) = 1. It is natural 

Assume that v is an arbitrary, but fixed natural number (~21). 
(10) will be in the given case 

( j = l ,  2,. . ., Y). 
- dJs -jlgj" - . 
d w j  

With the aid of recurrent expressions 
Y 

Go (0) = 1, G,,, (w) = c .'[GI (0)l"l 
k=O 

let us introduce the polynomials 
. - / .  I 

* 
made by Sundman. 

Note that in his estimate Beloritzky was resting on the estimate of $2 
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o f  which the coefficients are whole positive numbers, and the power mn is deter- 
mined by the fonnula 

9, = (v + 1p- 1. (17) 

It is not difficult to be convinced that polynomials (3), sought for, are 
linked with polynomials (16) by the relation 

and consequently, 

Further, it is obviously seen that if a certain function $ ( w )  satisfies the 
functional equation 

P =O P=U k=O (20) 

it must also be satisfied by the Functj.on 

But, polynomial Gl(w) satisfies Eq.(20). Consequently, all the polyno- 
mials G,,(w) satisfy it also, i. e., 

Combining (15) and (22), we obtain 

Therefore, for the determination of coefficients we may utilize any 
of the three relations (15), (22) and (23). 
interesting in that it contains the coefficients of only one polynomial and it 
thus does not require the preservation in computer's memory of coefficients 
of the preceding polynomial. Per contra, relation (23) leads to a linear con- 
nection between the coefficients of two neighboring polynomials, and on the 
strength of that, they were given preference. 

In particu ar, relation (22) is 

If  we equate the coefficients at identical powers w when substituting 
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directly (16) into (23) ,  we obtain 

when the limits of summation are defined by formulas 

and dk(m)are positive whole numbers serving as coefficients in the expression 

I Y \ I l l  v , n  

When operating with computers, it is more practical to handle outright 
For tlieni the iaw (24)  will be written in the form the coefficients ck(n). 

As to the numbers dk("'), it follows from (26) that 

min { h'.  v m }  3 dj'"'. (k,= 1, 2, . . ., v m 4 4  
J:,,, ' - I )  = I=n,.x {I], k-v}  

and t h e  solution of  this difference equation will be 
[ "-1 

W t l  

(IF' - - 2 ' ( - l~c~l lc~2- l -~ ( , + I )  ( k = 0 ,  1,. . ., vm). (29) 
L=O 

When computing d p )  the equal itv 

was also utilized. 

Formulas (27) and (29) fully r s lve the problem of finding the conver- 

polynomials g (u) and the first v + 1 youngest coefficients of polymomials gl(w) 
are equal to the unity (ck(n)= 1 for k = 0. 1, . . . , v and n > 1). Sut)seqrient 
coefficients decrease monotonically through the value 
rate of this decrease diminishes as the number n of the polynomial increases for 

gence multipliers chosen by us, ck en7 . Note that all v + 1 coefficients of 

c!;;=n-mm. The irii t i a  1 

number 7 for a fixed n. mere is obvious- 
to k = m , and we mar stop at the number 

a fixed v, and with the increase of t 
ly no necessity to compute all the c 
- k giving a negligibly small term in the polynomials (2). 
scale factors into the linear law (27 )  allows us to materialize the computation 
of ckIn)for any numbers - k. But, for the sake of simplicity, we limited ~ursel-ves 

The introduction of 
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to the computatiop of ckn) through the fulfillment of one of the conditions: 
k = m or C ~ ) < I  (k<m,),  where E is a small number fixed in advance. The 
program composed foresaw the computation of ck(n)by the given parameters v and 
E and also the computation of 
the values of all the polynomials gn(w) at several, arbitrarily chosen points. 
In the present work we bring up the values of 
w = 0,9. The first of these points lies at the goundary of the circle of Taylor 
series convergence of function g ( w ) ,  and the other lies near the singular point 
w = 1 of this function. 

. 

through the desirable number of polynomials n, 

g (u) at the points w =-I and 

In  the case v = 1, which corresponds to polynomials of the standard Cauchy- 
Lipschitz method, the formulas derived are simplified. Namely, at v = 1 . 

The computations were conducted at the outset according to a program espe- 
cially designed for that case. 
in the number k* of coefficients 
and the values of 
most of the subsequent tables, the following order of number writing is admitted: 
sign of the number, sign of the order, order, mantissa. 
g (-1) and gnC0.9) converge very slowly to the limit values 
gyO.9) = 10. 
usual Cauchy-Lipschitz method and search for more effective 
of the Picon modification. 

The coefficients 

Certain results of these calculations consist 
ck(n), corresponding to the limit E = 

gn(u) for w = -1 and w = 0.9 are compiled in Table 1.As in 

g(-1) = 0.5 and 

c(n) with the aid k 

As may be seen, the values 

Ibis was precisely the compelling reason for us to abandon the 

cp) of the first eight polynomials gn(w) for the values 
of v from 1 to 9 were comp t d by the general program. 
v = 11 the coefficients cpywere computed for the first twenty polynomials gn(U). 
We assumed everywhere E = 
coefficients ck(n)increases with the rise of n - and 

The values of 
the values of 

E = 10-10, coincided with the corresponding values of Table 1. 
Table 4 are the values of gn(w) for v = 10 and v = 11, and also the number of terms 
k* in the corresponding polynomials. 
mials gn(-1) with odd v approach g(-1) trom below, and gn(-1) with even v - 
from above. 

For the values v = 10 and 

It may be seen from Table 2 hnw the number of  
In Table 3 we compiled v .  

and g,(O.9) for n = 1,. 2 ,..., 8 and v = 2, 3 ,..., 9. 
v = 1, computed according to the general program with 

Finally, given in 

It is interesting to note that the polyno- 

From the analysis of these data it fellows that the polynomials gn(w) with 

At the same time it is not advantageous to take too great 
great v and small g are considerably more effective than the polynomials with 
small v and great g. 
v on account of the large number of terms in the corres onding polynomials. 

program for the computation of coefficients ak in the problem of three bodies 
allowed us to determine these coefficients for k = 0, 1, ..., 157. 
f r the subsequent work we selected and recorded on a magnetic tape the coefficients ck) (n = 3,  3 ,  4, 5) for the values v = 9 and v = 10. 

The 
choice of required polynomials was influenced also by t Fi e circumstance that the 

This is why 
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T A B L E  1 

____. 

6 
36 
68 
94 

119 
141 
161 
178 

Values and Number of Terms i n  Polynomials gn(u) f o r  
v = 1 and E = l o - '  

.- 

7 
44 
78 

107 
130 
153 
172 
190 

8 
16 
23 
29 
34 
39 

2 3  
4 9  

26 
38 
51 
63 
76 
88 

- 
n 

_c_ 

1 
2 
3 

5 
6 
I 
8 
9 

10  
11 
12 
13 
14 
15 
16 
11 
18 
19 
20 

-_- - 

k' - 
2 
4 
6 

16 
22 
27 
32 
37 
41 
45 
50 
54 
58 
62 
65 
70 
1 4  
16 
82. 
86 

- - .  

I n  (0.9) -~ 
++Ol 582226813 

591041720 
599415881 
607539018 
615262079 

' 622667648 
629716210 
636606412 
643115275 
649498379 
655590018 
661463338 
661130461 
672602518 
671890048 

++oi m o o 2 4 7 5  

k' 
.- 

h0 
03 
97 

101 
104 
108 
111 
115 
119 
122 
126 
129 
133 
136 
140 
143 

I - .  

n -- 
21 
22 
23 
24 
25 
26 
27 

29 
30 
3 I 
32 
:i 3 
34 
35 
36 

28 

-t 4 1  19GO00i)i)O 
230612 jO0 
278057470 
31 1 573 14 5 
3.; 0 3 9  5 17 
365767913 
388763313 
4097G2741 
42891 h640 
446662933 
463132605 
4784 85476 

++OO 491539326 
491933266 
492292147 
492620419 
402921923 
493i99729 
493456548 

+-too 00O000GO0 

42859S03 1. 
4*":111998 
4 0 1 1 7 W 6  
46S306476 
4732'19012 

, 47bSi14S8 

481 112879 
483460124 
484902359 
486113092 
487143953 

48S605718 
489465225 
400086934 
490623486 

1-400 491104923 

3750:'X)(JO3 

4 i w ~ m a  

4am32273 

493694673 
493916013 
494122450 
494315284 
494495667 
494665328 492h50,:87 

506934107 
51 9026238 
5310077S4 

494824665 
494974159 

+ +00 4951 16393 
542339284 
553079912 
56321 96ON 

-*-to1 572982292 
-. 

T A B L E  2 

Number of Terms i n  Polynomials gn(u) f o r  E = 

- 
8 

_ _  - 
9 

57 
94 

123 
147 
168 
188 
204 

- 
1 

- 
9 
- __ 

10 
63 

100 
129 
153 
174 
193 
210 

- 

nlv - 
1 
2 
3 
4 
5 
6 
7 
8 

3 
- 

4 
16 
41 
61 
19 
98 

115 
131 

4 
- - 

5 
25 
55 
80 

,103 
124 
144 
161 

7 
-- - 

8 
51 
86 

116 
140 
162 
181 
198 

10 
-_ __ 

11 
66 

105 
134 
158 
179 
198 
214 

- 

l1 I 

218 

__ 

T A B L E  3 

Values of Polynomials gn(u) for  v = 2 ,  3 ,  ..., 9 
and E = g (-1, 

4 5 .  I 2 3 
.- 

+ t O l  100000000 ++OO 000000000 
++OO 514218750 471619170 

524350346 493579552 
511791984 497654126 
506913968 438902382 
504534706 499402706 
503200602 499640263 

4?9?h?!Nl 

++Ol 100000000 . 
++OO 514083565 1 +-too ooooo0ono 

493500958 
. 501950091 

500512257 
500187179 
500083561 

499886133 499410014 I 
499967246 
499981961 
499994779 

++oo 499997450 
500042670 

+-tot! 5N0239S6 
- i 



a 

7 8 6 9 
_I ______ -_--- 

+-to1 271000000 
379513669 

534750921 
465151736 

500G01784 
500000657 

++01 714559216 

4999c .-29 500000032 499999993 
4999'1',315 500000012 499999999 

765175647 
812026493 
84'7645055 

++01 U75091860 

4 1  521703100 
745527 124 
855872447 
918170516 
9 506 18935 
969134655 
980101908 

- e + O l  966816576 

++01 409510000 
6035ti8923 

+t41 509552790 
7045~1'1173 
896390l29 
94488 i4 53 
965308937 
962151 385 
939255838 

-6-1 01 993325074 

7 289 5 194 4 
8'10302 LbO 
661131586 
900586935 
925825546 

-1--+01 913631984 

++01 468553000 
6S319i462 
805611402 

913151447 
945153072 

a 7 6 6 m 5 3  

962258737 
. +-1-01 973280467 

1 i :  4 

1 :  
I . 7  
1 8  

+-141 612579511 
633340068 
92333 SO73 
962488431 
980637 191 
989534466 
934109019 

-i--*-Ol 996564564 

-t---Ol 651321560 
864407012 
942982300 
974301648 
9S77 07 576 
993800719 
996139593 I 
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Section 2. Series of Polynomials in the --___ 
Bo-Body Problem 

The problem of two bodies may serve as the simplest example of polynomial 
series application in celestial mechanics. For the purpose of definiteness let 
us consider the case of a nondegenerate elliptical motion. 
nates of the bodies represent in themselves analytical functions of time t, or ,  
which in fact is the same, of the mean anomaly M. 
functions' singularities on the plane M was first studied by Moulton in 1903 [15] 
who has shown that the coordinates of singular points depend only on eccentricity 
- e and are determined by the equality 

The relative coordi- 

The disposition of these 

where 

Forging somewhat ahead, let us poi.nt out that the values of R for equidis- 
tant values of eccentricity are compiled in Table 5. 

Since Q is rigorously > 0 for any e < 1 ,  the series of polynomials by M for 
the coordinates of the elliptical problem of two bodies converge for any real M. 
The constuction of these series will be started with the search for the coeffi- 
cients of the corresponding Taylor series. Wi-thout generality limitation it is 
sufficient to consider only two functions 

X= cos E - e, Y= \I1 - e2 sin E, (34) 

clearly given with the aid of the eccentric aiioiualy E. 
these functions are tabulated by arguments of M and (Tnnes, 1927 [ 9 ] ) .  Inas- 
much as E is linked with M by the Keplerian equation 

Note, 1:); the way, that 

E -e sin E = h1,  (35) 

the Taylor series of these functions have the for111 

For the determination of ak and bk we shall substitute series (36) into 
the differential equations satisfied by the €unctions 

d M -  d m '  
dX ( I - e z ~ e X ) - - - - - - - -  

dY 
dM - (1 - e2 - e X )  -- - \/I - e2 (e + X). 

(37) 



Introducing at first the scalar multiplier K so that 
k *  ak = x a k ,  6 ,  = x k b ; ,  

we shall obtain the following system of recurrent Forniulas: 

(k=1, 2, . .  .), 
allowing us to compute in sequence all ag arid b t  by the initial coefficients 

Having determined the coefficients ai: and b c  for  the given value of - e, 
we shall find the sequences of polynoinials (2) 

Generally speaking, it is possible to f.ind the letter expressions of ak and bk as a function of - e. Indeed, assunling 

we obtain from (39) at K = 1 

Hence it may be seen that i$ and $ (k = 1, 2 ,  . . .) are polynomials from - e 
power k -1 with integral positive coefficients 

(44) (,’ k-lf 1 ( k )  ( k )  
SA. = a,, 4 U I  e -I- . . . +ap-le 

d k =  bo 4 bl e-t- . . . -t-bkVle ( k )  IC)  ( k )  k-1 . J 
For the coefficients of these polynomials we may derive the foll@fing expres- 

s ions : 

1 j 
al/l+’) = 2 

i = O  
(;. -1- 1) 2-Ac{r22dA, k ,  

I (45) 
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a', = 1, 6 ,  = I ,  \ 

5, = 1 1- 3e, 
d,= 1-1-24-1 45e', 
Z4 = 1 -i-117c-i-1107eL-~ 1575e7, 

h2=1- t -9e,  

h:, 1 I -  Srle - i 225e2, 
L4 = 1 - i-213e-i-4131e2-~-11O25e~. 

. . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  
4 

where 

' 147) 

! i -1 

'The first few polynomials computed by these forniulas will be 

Although formulas (4L), (44) - (4b) al low us to find the letter values of 
the coe€ficients ak and tik, their utilization f o r  computer calculations is hardly 
appropriate. Note that for that purpose the Stumpff formulas [26] are also of 
little convenience; they have an entirely different structure, but they also allow 
us to find the general terms of Taylor series of the two-body problem. 

e 
b4 
- 

According t o  the program drawn, a t  first a$ and bf were computed for any 
and K by 'lonnulas (39) , then polynoniiJs (41) were conip t d for the values of M 
= K  -V2.At the same time we utilized Ilic coefficients ch.7 (n = 2 ,  3, 4, 5) for 

u = 9 a d  v = 10, indicated in the preceding section. bloreover, the exact values 
of X(bl) and Y(M),  obtained by way of the solution of the Keplerian equation, were 
also coniputed. The results of these calculations are compiled in Table 5.  

In  Table 5 [following pages] the values of X(M) arid Y(M) and the correspond- 
ing sequences of polynomials (41) are given f o r  each e = O.OS(O.OS)O.95 and the 
values M = 0 and M = 1 .In. For M = a, that  is, at the boundary of the circle of 
series ' ( 3 6 )  coi~ver-gence, polynomials wit11 n = 5 give a practically exact result, 

such a pre- 
cision is not attained here, for an insufficient number of terms was retained in 
polynomials gn(w) ; on the strength of this po 1) Gmiials witn n = 5 provide a 
precision by one order lesser than the polynomials of the preceding approxima- 
tion, namely with n = 4. 

bounded by the value E = 10-1 O ,  we are compelled to reject for he terms 

greater in absolute value that the number n of the polynomial is greater. 
On account of that, the polynomial's (41) sequences, compiled in Table 6 for 
M = 1.19 

;I coil cidence of eight-nine significant numerals. For M = l.lQ 

In reality, because of the insufficient number of coefficients cp) 1 
a uk 

rising in absolute value and as n increases, the terms cp)akur(, so much t 6 e 

end up with the number n = 4. 

As already indicated, it is not difficult to extend the computation of cp) 
till as small an E as is desirable. 
may also be applied for great values of M. 

Then the sequences of polynomials (41) 
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T A B L E  5 

Convergence of Sequences of Polynomials in the Two-Body Problem 
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Section 3 .  The Sundman Series in the Two-Body 
Problem 

The Sundnian series coefficients in the two-body problem may be obtained 
in a final form. Indeed, assume that function f(w), given in the form (l), 
analytical i n  an infinite band 2 Q  wide and symmetrical relative to the real 
axis W. After applyingthe Paincare transformation (9) this function may be 
panded in power series 

is 

ex- 

converging in a circle 18 I 
Belorizky, in order t o  fi.nd the coefficients As, it is sufficient to substitute 
in (1) the expansion of w by powers 8 ,  stemming from (9). 

< 1. As was shown in the above-mentioned work by 

We then obtain 

Here pvLzk are positive numbers, which are coefficients of the expansion 

Be 1 or i zky indicated a 1 so the recurrent fo i-mu 1 as 

( F 3 ,  4, ...; k = 0 ,  1, ... , [+I), 
allowing to cornpute these coefficients in sequence by the initial values 

are known in a final form, the Sundman series coefficients (48) may also be 
found by formula (49) in the final form. This is why the knowledge of the com- 
mon terms ak and bk of series (36) allows us to write also the common terms 
Ak and Bk of the Sundman series of two bodies 

p:'J =ply),= 1. 
Therefore, if the coefficients of the Taylor series (1) of function f(w) 

m m 

We have computed all the coefficients pYLzk through the number s = 120 in- 
clusive. However, they were without use, for it was found to be simpler to find 
Ak and Bk directly, without utilizing their relationship with ak and bk . 
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Indeed, as functions of 0 ,  X and Y s a t i s f y  the equations 

d X  411 
dO * V I ' -  ,2 1-02 ' 
dY - 412 v ' i i Z 3  e + X 
dO 

(1 - ea - e X )  - = - 

(1 - ea - e x )  - - I x i X *  
(53)  

Hence follow the recurrent formulas f o r  the coeff ic ients  Ak and Bk 

4L! (2k-r-2)(1 - e ) A h . k , = e  y(2j-1-2) A,+1,4- j -  
~ yBj ad 'i; V ' l  - e' h. 

J = O  j = O  

with the i n i t i a l  cordit ions 

The following actions were taken acwrcli i ig t o  the program prepared: 

1) the calculation of A h l  I arid B, JY For,iiulas (54) t o  k = 1700 inclusive; 
2 )  sununation OC s e r i c s  (52) for the values 8 = 0 .05  (0.05) 0.95, whereupon 

t h i s  summat ion continued till the simultaneous l:ulfillmeiit of the conditions 
' Anl)'b i < 10-19, I Bkh?h-i 1 1  / 10-Jg. 

I 

3) 
4)  sumlation of series (52) Ior the value o r  8 corresponding t o  M = 2r, 

calculat ion ol: M and 01 the exact values of X(M) , Y(M) f o r  these values 

t i l l  the fulfi l lment 01 the above-indica~ed coriditioris, o r  t o  l i  = 1700, i f  these 
conditions a r c  iiot s a l  i s f i ed .  

A l l  these operations were performed f o r  every e = 0.05 (0.05) 0.95. Part  
of the r e su l t s  obtained is  ref lected i n  the [cd,Jles presented here. The value of 
the mean anomaly M i s  given i n  Table 6 as a function of 
ant  t o  note t h a t  t o  the value PI1 = 9, L : L u L  i s ,  t o  the radius of series' (36) con- 
vergence, corresponds f o r  any _e one and the same value 

and 8 .  I t  i s  import- 

- 0.65579 42026. e x p  (it/2) - 1 0 = - . ~ -  'v 

e x p  ( x / 2 )  -I- 1 

The values of X ( e ) ,  Y ( 0 )  of series (52) f o r  a l l  e from 0.05 t o  0.95 coinci - 
ded with the exact values of X ( M ) ,  Y ( M ) .  The number k* of the las t  retained term 
i n  t h i s  series is brought out i n  Table 7 ,  from which it i s  clear t h a t  the Sundman 
series coeff ic ients  vary very l i t t l e  as a function of eccen t r i c i ty ,  inasmuch as 
the number of terms i n  these series is mainly determined b'j the value of e only. 
Compiled i n  Table 8 are the values of X ( e )  and Y ( e )  of s e r i e s  (52) f o r  , 
the corresponding values of 8 and t h e  number k*. The exact values of X(M) , Y(M) 
i n  t h i s  case w i l l  be 1 - e and 0 .  I t  may be seen t h a t  f o r  e = 0.15, the 1700 
tenns UL o - - - ~ - - -  ~ U I U I W ~  3Glies ---- - . m - ~  v y c I I u  uLLvu.., a l r ~ n ~ r  fnimd t o  be insiifficient t o  assure the p rec i -  
sion i n  nine decimal signs and f o r  e = 25, even the f i r s t  ones were already wrong. 

M = 2 



Section 4. Series of Polynomials in -_ the Problem of Three Bodies 

The determination of coefficients ak in the problem of three bodies in let- 
ter form and, by the same token, the analytical determination of the correspond- 
ing coefficients of Sundman series, would have a very great significance and, in 
particular, as was shown by Belorizky in [ S I ,  to allow basically the solution of 
the question of stability by Lagrange. 
nation of coefficients ak 
considerable difficulties. 
consecutive differentiation of the right-hard parts of equations of motion is in 
practice totally unfeasible. The way out of this situation was shown by Steffensen 
[ 2 4 ] ,  who proposed to reduce the equations to second pver independently from 
their order, and then obtain recurrent relations for Steffensen utilized the 
power series by t for the representation of t h e  solution of the three-body problem 
in a certain neighborhood of the initial moinent. I.ater, Rauch [22]  and Rauch and 
Riddel [23]  applied the Steffensen method to the problem of n bodies, whereupon 
in the first of these works the time t for taken f o r  the independent variable, and 
in the second - the regularizing varyable w. 

Ilnfortiinately, even the numerical determi- 
for concrete initial conditions is linked with fairly 
Indeed, the firidirig of these coefficients by way of 

ak. 

Here M is the sum of masses, - f is the gr~tvitational constant and 

P ,  -t- r', -t - f ; ,  1 0. 

With aid of the force function 

and of the scalar multiplier K , we dial 1 introduce the regularizing variable 
by the formula 

dw = KlJdt (60) 

whereupon we shall consider that at t = 0, w =  0. Ilenoting by a prime the differ- 
entiation with respect to w ,  we shall reduce Eq.(57) to the form 

Let us assume that at the initial moment the following two conditions are 
fulfilled : . ./. . 



19. 

1) I C 1  > 0 ,  where 

2) min ir, , r2, r3) 0. 

The first condition is sufficient for the elimination of the possibility 
of triple collisions in the course of the entire time of motion. The second con- 
dition, implying the absence of double collision at the initial moment of time, is 
not compelling and is utilized only for the sake of simplicity. Without this con- 
dition the system (61) ought to be reduced to clearly regularized form by intro- 
duction of new variables. 

Denoting by ~i the squares of mutual distancesandby ai the cubes of the 
reciprocal values of these distances, we finally obtain the following system of 
eighteen equations of second order: 

rn m m 

Note that the uti]-ization of relation (58) allows us to reduce the number 
of unknown functions to fifteen, but it would be more appropriate to keep this 
relation for the control, and to consider the coefficients 
process of computations as. independent. 
at the initial moment of time t = 0, we shall find the first coefficients of 
series (64) 

rik), pik), pik)  in the 
According to quantities r,(O), P, (O)  given 

~ $ 0 )  = P,  (0), Aio)= I Pi (0) la, a\')= I rr (0) i", 



The substitl~tion of (64) into (63) leads to the recurrent formulas for 
the determination of subsequent coefficients 

(k=l, 2, * .). 

According to the established program all the coefficients of series (64) 
were coiiiputed to the number k = 157 inclusively, and then sequences of PO 
mials (2) were constructed with the aid of the convergence multipliers 
of the first section (n = 2, 3, 4, 5; v =  9 a n d v =  1 0 ) .  

c 

'lie coefficients ak. in the three-body problem, that is, the coefficients 
of series (04) were obtained by us for four examples. These coefficients are 
denoted i n  the following respectively as 
tl first exainl)le we took the Lagrange solutions, but the corresponding coef€i- 
C-icnts : i ~ ( l )  were utilized only for various control actions. 
ple we considered the plane hyperbolic-elliptic-type motion studied by Zuiikley 
in 1941 [31] by the numerical integration methd. 
masses are postulated equal to unity, and the initial conditions are: 

ak(l), ak(2), ak(3) and ak(4). A s  

As a second exam- 

In this motion a l l  the  three 

In the Zumkley work the values of p l ,  f iZ,  f 3  
f o r  t = 0 (02) 2.8 and t = 2.8 (0.1) 10. 
about 2.5 convolutions around the mass ml , and the mass m3 drifts away from 
the first two along a hyperbolic-type curve. 

are given with three marks after coma 
During that time the mass m2 effects 

The third example is based upon the Stromgen work of 1909 [Zl]. In this 
case m, = m2 = 1, m3 = 2 and at the moment of time t = 0 

. . / .  . 
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1 P1 ='(-lo, 0, O), j1 = (0, - v+j, 0) , 
- 

The following denotations were adopted i n  the Stromgren work: ml= A, ma=& 
m , = C ,  rl=-rB, rI=rL, 
thc values of f and TB for  t = 0 . 5  (1) 215.5 were given with a precision 6 

forms four convolutions around the mass m i  , and the mass m3 d r i f t s  away from 
them along a strongly elongated e l l i p t i c a l -  type curve. 

and t = -0.5 was taken fo r  the zero moment of time; 

t o  three decima e s a f t e r  coma. During tha t  moment of t i m e  the mass m2 per- 

Finally,  as  a fourth example a plane motion with close double rapprochements 
was taken, which was investigated by Burrau in  1913 
m3 

[ 6 ] .  Here ml = 5 ,  m2 = 4 ,  
= 3 and for  t = 0 

I P * = (  3, -4, O), $,=(O, 0, O), 
p2= ( 0, 4, O), t z = ( O ,  0, O), 
P 3 = ( - 3 ,  0, O), 33=(0, 0, 0). 

Inasmuch as  i n  t h i s  motion the  constant c of the area integral  is zero, and 
by the same token the poss ib i l i ty  is  not excluded of a t r i p l e  co l l i s ion ,  one may 
not a s se r t  tha t  the polynomial s e r i e s  converge in  t h i s  case f o r  any rea l  t .  But 
it was interest ing to  apply the polynomial series t o  t h i s  type of motion zlso. 
Burr-au provides the values of F2 and r3 with a precision t o  4-5  decimals a f t e r  
coiiia for  
a close rapprochement of m l  and m 2 ,  
inl and m3.  

t ,  varying i r regular ly  from 0 t o  3.35. A t  t = 1.88, there takes place 
and €or t = 2.9 - a close rapprochement of 

'l'he seque;;c-cs of polynomials were constructed fo r  a l l  three indicated cases 
I'or various values of K .  The values of K themselves were so assorted tha t  the 
wrrespoiiding coeff ic ients  a vary suf f ic ien t ly  slowly and tha t  a l l  possible mutual 
products , figuring i n  (66), $lo not come out  of  +he range of numbers represented 
in  the computer M-20. Found subsequently were the values of the constructed poly- 
nomials i n  the se r i e s  of points w. 
i n  Tables 9 - 11.*The data of these tables  i l l u s t r a t e  the convergence of the se- 
quences of polynomials, interpolated a f t e r  the r e su l t  of Zumkley, Stromgren and 
Burrau a t  corresponding moments o f  time. The l a s t  numerals of these values are 
obviously approximate. The value w = 1 corresponds approximately t o  1 / 3  convolu- 
t ion  of m2 re la t ive  t o  m l  i n  the example 2 ,  convolution of m l  r e l a t ive  
t o  m 3  i n  the example 3. As may be seen from the tables, the rapidi ty  of conver- 
gence of polynomial sequences leaves in  these cases nothing t o  be desired. 
However, the increase of w o r ,  which is  the same, the decrease of K a t  constant 
w = 1 
region of e f fec t ive  application of  sequences of polynomials it is necessary, on 
the one hand, t o  increase the number of coef f ic ' e  ts 
t o  lower the l i m i t  E ,  s e t  a t  calculation of c p p  

The mnqt charac te r i s t ic  r e su l t s  are  compiled 

and '/ 

leads t o  a rapid deterioration of convergence. In  order t o  broaden the 

ak , and on the other liarid, 

~~ 

* The values interpolated according t o  the r e su l t s  of Zumkley, Stromgren 
and Burrau t o  the corresponding moments o f  time are Lidicated i n  Tables 9-11 
by a s t a r  
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Number of tenns i n  the Suric1:mi ser ies  of  the two-body problem 
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Sunclman series of the two body problem for M = 2 
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f o r  w = 1 in the Convergence of sequences of Dolvnomials 
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Convergence of sequences of polynoniials f o r w =  1 in the case 
ak ( 3 ) ,  1/ I C =  16 .25  

t 
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Convergence of sequences of polynonii;l!s fo r  O= 1 in the case 
ak (4) ,  1/ K = 40 
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The fourth exmple was found t o  be much more complex, as should have been 
expected. 
polynomials is in  t h i s  case very slow, so t h a t  even the  second decimal point  
i n  polynomials with n = 5 may be erroneous by 1 - 2 un i t s .  Such a poor conver- 
gence is  txplaincd by the following causes. ITirst, the values w = 1, 1 / ~  = 40 
correspond precisely t o  the moment of time of c lose rapprochement of ml and w ,  
when a l l  the coordinates vary very rapidly. Secondly, by v i r t u e  of the irregu- 
l a r  character of motion, the coeff ic ients  (4)  do not vary monotonically 
as  ak ( 2 )  and ( 3 )  do. Because of c l o  rapprochement near the i n i t i a l  moment 
of time the coef f ic ien ts  ~ ( ~ 1 ,  v ( ~ )  and o@for the  corresponding number i are  
great  in  absolute value, and t h i s  is why the coef f ic ien ts  
a grea t  loss  of precision. 
system (61) t o  a c l ea r ly  regularized form beforehand. 

According t o  data  of Table 11, the convergence of the  sequences of 

ak 

flk) are compuyed with 
Undoubtedly, i n  such cases it is  be t t e r  t o  bring the  

C O N  C L U  S I O N  

The results oL this work shows that the series of polynomials may apparent- 
l y  be u t i l i z e d  f o r  the niunerical solution of the problem of three bodies. Contrary 
t o  the standard numerical integrat ion by s t eps ,  the  solut ion is  here made in  the  
form of f i n i t e  ana ly t ica l  expression ( 2 ) ,  va l id  fo r  a l l  w from zero up t o  a ce r t a in  
m a x i m u m  value. This ~n:ucirnum value may be made as  great  as may be desired by in-  
creasing the nunber 11 of the polynomial and of i t s  power mn. 
may not be expected polynomials ( 2 ) ,  inasmuch as even f a s t  converging power 
series of trigonometr~ical functions are e f fec t ive  only a t  a su f f i c i en t  proximity 
t o  the i n i t i a l  point .  

Obviously, too much 

The effectiveness i l l  tlie u t i l i za t ion  of sequences of polynomials represent- 
ing the general solut ion of tlie three-body problem may be improved i n  numercus 
ways. First of a l l ,  as  already pointed out more than once, the number of terms 
i n  the polynomials (2)  may be s igni  f icant ly  increased. 
( 2 )  they may lie subjected t o  convolution with the a id  of Chebyshev polynomials, 
decreasing i n  t h i s  way t h e i r  power. 
i o r  the iiiost e f fec t ive  colivergence factors 
sions may be tes ted ,  f o r  example i n  ser ies  of p lynomia ls  i n  the Mittag-Leffler 
r e c t i l i n e a r  s t a r .  
1944 [l] 

After o! >taining polynomials 

Secondly, one may attempt t o  extend the  search 
ck(n).  Thirdly, other  types of expan- 

Let us r e c a l l  i n  t h i s  connection the  Markushevich expansion of 

generalizing ( 2 ) .  tlere y (n) a r e  cer ta in  rea l  numbers, such tha t  k 

and {I,) and { 1 Lire ce r t a in  sequences of  natural  numbers approaching the 
' i n f i n i t y  alongsi e with n. 3 - 



Final ly ,  one more in te res t ing  poss ib i l i ty  should be mentioned, namely, the 
representation of the general solution of the three-body problem i n  the  form of 
s e r i e s  by Hermite polynomials. 
IIm(o)l< const. 
expansion i n  Herniitepolynomial series in  t h e  three-body problem over the e n t i r e  
ana ly t i c i ty  
the well known simple m d  su f f i c i en t  conditions for the convergence of t he  series 
of ttermite polynomials of function f ( w )  over the e n t i r e  r e a l  axis: 

The convergence region of these series is the band 
Without investigating the question of convergence of coordinate 

IIm(w) ) <  R ,  l e t  us only point out t h a t  these coordinates s a t i s f y  

1) F(w) is a piecewise-smooth function i l l  my  Cinite in te rva l  of t h a t  ax is ;  

2) the  in tegra l  I w I f 2  (m) exp (-d) do has a f i n i t e  value. 

In the expansion by Ileniiite polyno~nials, just as  also i n  the expansion i n  

a0 

-W 

series of polynomials i n  the r ec t i l i nea r  Mittag-Leffler star, the quant i ty  
not appear anywhere i n  e x p l i c i t  form, as this takes place in  the Sundman series, 
and t h i s  i s  why one may hope f o r  a more rapid convergence of these expansions 
by comparison with the convergence of the Sundnan series, 

does 
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